Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Immunol ; 13: 952650, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2326989

RESUMEN

Given pandemic risks of zoonotic SARS-CoV-2 variants and other SARS-like coronaviruses in the future, it is valuable to perform studies on conserved antigenic sites to design universal SARS-like coronavirus vaccines. By using antibodies obtained from convalescent COVID-19 patients, we succeeded in functional comparison of conserved antigenic sites at multiple aspects with each other, and even with SARS-CoV-2 unique antigenic sites, which promotes the cognition of process of humoral immune response to the conserved antigenic sites. The conserved antigenic sites between SARS-CoV-2 and SARS-CoV can effectively induce affinity maturation of cross-binding antibodies, finally resulting in broadly neutralizing antibodies against multiple variants of concern, which provides an important basis for universal vaccine design, however they are subdominant, putatively due to their lower accessibility relative to SARS-CoV-2 unique antigenic sites. Furthermore, we preliminarily design RBDs to improve the immunogenicity of these conserved antigenic sites. Our study focusing on conserved antigenic sites provides insights for promoting the development of universal SARS-like coronavirus vaccines, thereby enhancing our pandemic preparedness.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Glicoproteína de la Espiga del Coronavirus/genética
2.
Cell Mol Immunol ; 20(4): 351-364, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2287148

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.


Asunto(s)
COVID-19 , Receptores Quiméricos de Antígenos , Humanos , SARS-CoV-2/metabolismo , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Caspofungina , Felodipino , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Inflamación , Citocinas/metabolismo
3.
Front Pharmacol ; 13: 926750, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2264723

RESUMEN

Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, several variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged and have consistently replaced the previous dominant variant. Therapeutics against variants of SARS-CoV-2 are urgently needed. Ideal SARS-CoV-2 therapeutic antibodies would have high potency in viral neutralization against several emerging variants. Neutralization antibodies targeting SARS-CoV-2 could provide immediate protection after SARS-CoV-2 infection, especially for the most vulnerable populations. In this work, we comprehensively characterize the breadth and efficacy of SARS-CoV-2 RBD-targeting fully human monoclonal antibody (mAb) MW3321. MW3321 retains full neutralization activity to all tested 12 variants that have arisen in the human population, which are assigned as VOC (Variants of Concern) and VOI (Variants of Interest) due to their impacts on public health. Escape mutation experiments using replicating SARS-CoV-2 pseudovirus show that escape mutants were not generated until passage 6 for MW3321, which is much more resistant to escape mutation compared with another clinical staged SARS-CoV-2 neutralizing mAb MW3311. MW3321 could effectively reduce viral burden in hACE2-transgenic mice challenged with either wild-type or Delta SARS-CoV-2 strains through viral neutralization and Fc-mediated effector functions. Moreover, MW3321 exhibits a typical hIgG1 pharmacokinetic and safety profile in cynomolgus monkeys. These data support the development of MW3321 as a monotherapy or cocktail against SARS-CoV-2-related diseases.

4.
Cell Host Microbe ; 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2237104

RESUMEN

SARS-CoV-2 spread in humans results in continuous emergence of new variants, highlighting the need for vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation-patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x) that contains key regions and residues across multiple SAR-CoV-2 variants. STFK1628x demonstrated high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine composed of STFK and STFK1628x elicited high titers of broad-spectrum neutralizing antibodies to 19 circulating SARS-CoV-2 variants, including Omicron sublineages BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, and BA.4/5. Furthermore, this vaccine conferred robust protection against intranasal challenges by either SARS-CoV-2 ancestral strain or immune-evasive Beta and Omicron BA.1. Strikingly, vaccination with the bivalent vaccine in hamsters effectively blocked within-cage virus transmission of ancestral SARS-CoV-2, Beta variant, and Omicron BA.1 to unvaccinated sentinels. Thus, our study provided insight and antigen candidates for the development of next-generation COVID-19 vaccines.

5.
Frontiers in immunology ; 13, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2046995

RESUMEN

Given pandemic risks of zoonotic SARS-CoV-2 variants and other SARS-like coronaviruses in the future, it is valuable to perform studies on conserved antigenic sites to design universal SARS-like coronavirus vaccines. By using antibodies obtained from convalescent COVID-19 patients, we succeeded in functional comparison of conserved antigenic sites at multiple aspects with each other, and even with SARS-CoV-2 unique antigenic sites, which promotes the cognition of process of humoral immune response to the conserved antigenic sites. The conserved antigenic sites between SARS-CoV-2 and SARS-CoV can effectively induce affinity maturation of cross-binding antibodies, finally resulting in broadly neutralizing antibodies against multiple variants of concern, which provides an important basis for universal vaccine design, however they are subdominant, putatively due to their lower accessibility relative to SARS-CoV-2 unique antigenic sites. Furthermore, we preliminarily design RBDs to improve the immunogenicity of these conserved antigenic sites. Our study focusing on conserved antigenic sites provides insights for promoting the development of universal SARS-like coronavirus vaccines, thereby enhancing our pandemic preparedness.

6.
Vaccine ; 40(47): 6839-6848, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2042193

RESUMEN

The ongoing coronavirus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drastically changed our way of life and continues to have an unmitigated socioeconomic impact across the globe. Research into potential vaccine design and production is focused on the spike (S) protein of the virus, which is critical for virus entry into host cells. Yet, whether the degree of glycosylation in the S protein is associated with vaccine efficacy remains unclear. Here, we first optimized the expression of the S protein in mammalian cells. While we found no significant discrepancy in purity, homogeneity, or receptor binding ability among S proteins derived from 293F cells (referred to as 293F S-2P), 293S GnTI- cells (defective in N-acetylglucosaminyl transferase I enzyme; 293S S-2P), or TN-5B1-4 insect cells (Bac S-2P), there was significant variation in the glycosylation patterns and thermal stability of the proteins. Compared with the partially glycosylated 293S S-2P or Bac S-2P, the fully glycosylated 293F S-2P exhibited higher binding reactivity to convalescent sera. In addition, 293F S-2P induced higher IgG and neutralizing antibody titres than 293S or Bac S-2P in mice. Furthermore, a prime-boost-boost regimen, using a combined immunization of S-2P proteins with various degrees of glycosylation, elicited a more robust neutralizing antibody response than a single S-2P alone. Collectively, this study provides insight into ways to design a more effective SARS-CoV-2 immunogen.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Ratones , Animales , SARS-CoV-2 , Glicosilación , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Mamíferos/metabolismo , Sueroterapia para COVID-19
7.
Proc Natl Acad Sci U S A ; 119(34): e2204256119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1991767

RESUMEN

Antibody therapeutics for the treatment of COVID-19 have been highly successful. However, the recent emergence of the Omicron variant has posed a challenge, as it evades detection by most existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of the potential candidates, we found that nAbs X01, X10, and X17 offer broad neutralizing potential against most variants of concern, with X17 further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-electron microscopy structures of the three antibodies together in complex with each of the spike proteins of the prototypical SARS-CoV, SARS-CoV-2, and Delta and Omicron variants of SARS-CoV-2 defined three nonoverlapping conserved epitopes on the receptor-binding domain. The triple-antibody mixture exhibited enhanced resistance to viral evasion and effective protection against infection of the Beta variant in hamsters. Our findings will aid the development of antibody therapeutics and broad vaccines against SARS-CoV-2 and its emerging variants.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Secuencia Conservada , Cricetinae , Microscopía por Crioelectrón , Epítopos/inmunología , Humanos , Ratones , Pruebas de Neutralización , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
8.
Frontiers in pharmacology ; 13, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1958060

RESUMEN

Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, several variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged and have consistently replaced the previous dominant variant. Therapeutics against variants of SARS-CoV-2 are urgently needed. Ideal SARS-CoV-2 therapeutic antibodies would have high potency in viral neutralization against several emerging variants. Neutralization antibodies targeting SARS-CoV-2 could provide immediate protection after SARS-CoV-2 infection, especially for the most vulnerable populations. In this work, we comprehensively characterize the breadth and efficacy of SARS-CoV-2 RBD-targeting fully human monoclonal antibody (mAb) MW3321. MW3321 retains full neutralization activity to all tested 12 variants that have arisen in the human population, which are assigned as VOC (Variants of Concern) and VOI (Variants of Interest) due to their impacts on public health. Escape mutation experiments using replicating SARS-CoV-2 pseudovirus show that escape mutants were not generated until passage 6 for MW3321, which is much more resistant to escape mutation compared with another clinical staged SARS-CoV-2 neutralizing mAb MW3311. MW3321 could effectively reduce viral burden in hACE2-transgenic mice challenged with either wild-type or Delta SARS-CoV-2 strains through viral neutralization and Fc-mediated effector functions. Moreover, MW3321 exhibits a typical hIgG1 pharmacokinetic and safety profile in cynomolgus monkeys. These data support the development of MW3321 as a monotherapy or cocktail against SARS-CoV-2-related diseases.

9.
Front Microbiol ; 13: 854630, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1952414

RESUMEN

The Coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented public health crisis worldwide. Although several vaccines are available, the global supply of vaccines, particularly within developing countries, is inadequate, and this necessitates a need for the development of less expensive, accessible vaccine options. To this end, here, we used the Escherichia coli expression system to produce a recombinant fusion protein comprising the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; residues 319-541) and the fragment A domain of Cross-Reacting Material 197 (CRM197); hereafter, CRMA-RBD. We show that this CRMA-RBD fusion protein has excellent physicochemical properties and strong reactivity with COVID-19 convalescent sera and representative neutralizing antibodies (nAbs). Furthermore, compared with the use of a traditional aluminum adjuvant, we find that combining the CRMA-RBD protein with a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH-002C-Ac) leads to stronger humoral immune responses in mice, with 4-log neutralizing antibody titers. Overall, our study highlights the value of this E. coli-expressed fusion protein as an alternative vaccine candidate strategy against COVID-19.

11.
Lancet Respir Med ; 10(8): 749-760, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1867947

RESUMEN

BACKGROUND: All currently available SARS-CoV-2 vaccines are administered by intramuscular injection. We aimed to evaluate the safety and immunogenicity of a live-attenuated influenza virus vector-based SARS-CoV-2 vaccine (dNS1-RBD) administered by intranasal spray in healthy adults. METHODS: We did double-blind, randomised, placebo-controlled phase 1 and 2 trials, followed by a phase 2 extension trial, at a single centre in Jiangsu, China. Healthy adults (≥18 years) who had negative serum or fingertip blood total antibody tests for SARS-CoV-2 (in phases 1 and 2), with no prevalent SARS-CoV-2 infection or history of infection and no SARS-CoV-2 vaccination history (in all three trials reported here), were enrolled. Participants were randomly allocated (4:1 in phase 1, 2:1 in phase 2, and 1:1 in the extension trial) to receive two intranasal doses of the dNS1-RBD vaccine or placebo on days 0 and 14 or, for half of the participants in phase 2, on days 0 and 21. To avoid cross-contamination during administration, vaccine and placebo recipients were vaccinated in separate rooms in the extension trial. The phase 1 primary outcome was safety (adverse events recorded on days 0-44; serious adverse events recorded from day 0 until 12 months after the second dose). In the phase 2 and extension trials, the primary immunogenicity outcomes were SARS-CoV-2-specific T-cell response in peripheral blood (measured by IFN-γ ELISpot), proportion of participants with positive conversion for SARS-CoV-2 receptor-binding domain (RBD)-specific IgG and secretory IgA (s-IgA) antibodies, and concentration of SARS-CoV-2 RBD IgG in serum and SARS-CoV-2 RBD s-IgA in the nasopharynx (measured by ELISA) at 1 month after the second dose in the per-protocol set for immunogenicity. χ2 test and Fisher's exact test were used to analyse categorical data, and t test and Wilcoxon rank sum test to compare the measurement data between groups. These trials were registered with the Chinese Clinical Trial Registry (ChiCTR2000037782, ChiCTR2000039715, and ChiCTR2100048316). FINDINGS: Between Sept 1, 2020, and July 4, 2021, 63, 724, and 297 participants without a history of SARS-CoV-2 vaccination were enrolled in the phase 1, phase 2, and extension trials, respectively. At least one adverse reaction after vaccination was reported in 133 (19%) of 684 participants in the vaccine groups. Most adverse reactions were mild. No vaccine-related serious adverse event was noted. Specific T-cell immune responses were observed in 211 (46% [95% CI 42-51]) of 455 vaccine recipients in the phase 2 trial, and in 48 (40% [31-49]) of 120 vaccine recipients compared with one (1% [0-5]) of 111 placebo recipients (p<0·0001) in the extension trial. Seroconversion for RBD-specific IgG was observed in 48 (10% [95% CI 8-13]) of 466 vaccine recipients in the phase 2 trial (geometric mean titre [GMT] 3·8 [95% CI 3·4-4·3] in responders), and in 31 (22% [15-29]) of 143 vaccine recipients (GMT 4·4 [3·3-5·8]) and zero (0% [0-2]) of 147 placebo recipients (p<0·0001) in the extension trial. 57 (12% [95% CI 9-16]) of 466 vaccine recipients had positive conversion for RBD-specific s-IgA (GMT 3·8 [95% CI 3·5-4·1] in responders) in the phase 2 trial, as did 18 (13% [8-19]) of 143 vaccine recipients (GMT 5·2 [4·0-6·8]) and zero (0% [0-2]) of 147 placebo recipients (p<0·0001) in the extension trial. INTERPRETATION: dNS1-RBD was well tolerated in adults. Weak T-cell immunity in peripheral blood, as well as weak humoral and mucosal immune responses against SARS-CoV-2, were detected in vaccine recipients. Further studies are warranted to verify the safety and efficacy of intranasal vaccines as a potential supplement to current intramuscular SARS-CoV-2 vaccine pools. Steps should be taken in future studies to reduce the potential for cross-contamination caused by the vaccine strain aerosol during administration. FUNDING: National Key Research and Development Program of China, National Science, Fujian Provincial Science, CAMS Innovation Fund for Medical Sciences, and Beijing Wantai Biological Pharmacy Enterprise.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Orthomyxoviridae , Vacunas Virales , Adulto , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Método Doble Ciego , Humanos , Inmunoglobulina A , Inmunoglobulina G , SARS-CoV-2 , Vacunas Atenuadas/efectos adversos
12.
Sci Bull (Beijing) ; 67(13): 1372-1387, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1867754

RESUMEN

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 d after single-dose vaccination or 9 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants, especially for the latest Omicron variant. In addition, this vaccine also provides cross-protection against H1N1 and H5N1 influenza viruses. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to the fight against the ongoing coronavirus disease 2019 pandemic and influenza infection, compensating limitations of current intramuscular vaccines.

13.
Cell Rep ; 39(8): 110862, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1821171

RESUMEN

The rapidly spreading Omicron variant is highly resistant to vaccines, convalescent sera, and neutralizing antibodies (nAbs), highlighting the urgent need for potent therapeutic nAbs. Here, a panel of human nAbs from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent patients show diverse neutralization against Omicron, of which XMA01 and XMA04 maintain nanomolar affinities and excellent neutralization (half maximal inhibitory concentration [IC50]: ∼20 ng/mL). nAb XMA09 shows weak but unattenuated neutralization against all variants of concern (VOCs) as well as SARS-CoV. Structural analysis reveals that the above three antibodies could synergistically bind to the receptor-binding domains (RBDs) of both wild-type and Omicron spikes and defines the critical determinants for nAb-mediated broad neutralizations. Three nAbs confer synergistic neutralization against Omicron, resulting from the inter-antibody interaction between XMA04 and XMA01(or XMA09). Furthermore, the XMA01/XMA04 cocktail provides synergistic protection against Beta and Omicron variant infections in hamsters. In summary, our results provide insights for the rational design of antibody cocktail therapeutics or universal vaccines against Omicron.


Asunto(s)
COVID-19 , Vacunas , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Cricetinae , Humanos , Inmunización Pasiva , SARS-CoV-2 , Sueroterapia para COVID-19
14.
Cell Rep ; 38(12): 110558, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1797096

RESUMEN

Mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) may alter viral host tropism and affect the activities of neutralizing antibodies. Here, we investigated 153 RBD mutants and 11 globally circulating variants of concern (VOCs) and variants of interest (VOIs) (including Omicron) for their antigenic changes and cross-species tropism in cells expressing 18 ACE2 orthologs. Several RBD mutations strengthened viral infectivity in cells expressing ACE2 orthologs of non-human animals, particularly those less susceptible to the ancestral strain. The mutations surrounding amino acids (aas) 439-448 and aa 484 are more likely to cause neutralization resistance. Strikingly, enhanced cross-species infection potential in the mouse and ferret, instead of the neutralization-escape scores of the mutations, account for the positive correlation with the cumulative prevalence of mutations in humans. These findings present insights for potential drivers of circulating SARS-CoV-2 variants and provide informative parameters for tracking and forecasting spreading mutations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Hurones , Humanos , Glicoproteínas de Membrana/metabolismo , Ratones , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Tropismo , Proteínas del Envoltorio Viral
15.
Cell reports ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1728589

RESUMEN

Zhang et al. show in vitro cross-species infectivity and neutralization-escape characteristics of 153 SARS-CoV-2 RBD mutants and 11 globally circulating VOC/VOI variants. They reveal an association between enhanced cross-species infection potential and the current cumulative prevalence of mutations, which can inform surveillance and forecasting of SARS-CoV-2 spike mutations.

17.
Front Med ; 16(1): 39-55, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1669978

RESUMEN

Vaccination is the most effective and feasible way to contain the Coronavirus disease 2019 (COVID-19) pandemic. The rapid development of effective COVID-19 vaccines is an extraordinary achievement. This study reviewed the efficacy/effectiveness, immunogenicity, and safety profile of the 12 most progressed COVID-19 vaccines and discussed the challenges and prospects of the vaccine-based approaches in a global crisis. Overall, most of the current vaccines have shown safety and efficacy/effectiveness during actual clinical trials or in the real-world studies, indicating a development of pandemic control. However, many challenges are faced by pandemic control in terms of maximizing the effect of vaccines, such as rapid vaccine coverage, strategies to address variants with immune escape capability, and surveillance of vaccine safety in the medium- and long-terms.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Vacunación
18.
Emerg Microbes Infect ; 10(1): 365-375, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1490458

RESUMEN

Concerns about vaccine safety are an important reason for vaccine hesitancy, however, limited information is available on whether common adverse reactions following vaccination affect the immune response. Data from three clinical trials of recombinant vaccines were used in this post hoc analysis to assess the correlation between inflammation-related solicited adverse reactions (ISARs, including local pain, redness, swelling or induration and systematic fever) and immune responses after vaccination. In the phase III trial of the bivalent HPV-16/18 vaccine (Cecolin®), the geometric mean concentrations (GMCs) for IgG anti-HPV-16 and -18 (P<0.001) were significantly higher in participants with any ISAR following vaccination than in those without an ISAR. Local pain, induration, swelling and systemic fever were significantly correlated with higher GMCs for IgG anti-HPV-16 and/or anti-HPV-18, respectively. Furthermore, the analyses of the immunogenicity bridging study of Cecolin® and the phase III trial of a hepatitis E vaccine yielded similar results. Based on these results, we built a scoring model to quantify the inflammation reactions and found that the high score of ISAR indicates the strong vaccine-induced antibody level. In conclusion, this study suggests inflammation-related adverse reactions following vaccination potentially indicate a stronger immune response.


Asunto(s)
Hepatitis E/inmunología , Papillomavirus Humano 16/inmunología , Papillomavirus Humano 18/inmunología , Infecciones por Papillomavirus/inmunología , Vacunas contra Papillomavirus/inmunología , Vacunas Sintéticas/inmunología , Vacunas contra Hepatitis Viral/inmunología , Adolescente , Adulto , Anciano , Anticuerpos Antivirales/inmunología , Femenino , Hepatitis E/prevención & control , Hepatitis E/virología , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Inmunidad , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Infecciones por Papillomavirus/prevención & control , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/administración & dosificación , Vacunas contra Papillomavirus/efectos adversos , Vacunas contra Papillomavirus/genética , Vacunación/efectos adversos , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas contra Hepatitis Viral/administración & dosificación , Vacunas contra Hepatitis Viral/efectos adversos , Vacunas contra Hepatitis Viral/genética , Adulto Joven
19.
Nat Commun ; 12(1): 5652, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1440473

RESUMEN

The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses' receptor-binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Both antibodies confer good resistance to mutations in the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics. They can also inform the design of pan-sarbecovirus vaccines.


Asunto(s)
Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/terapia , Inmunización Pasiva/métodos , SARS-CoV-2/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/administración & dosificación , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/metabolismo , Sitios de Unión/genética , Sitios de Unión/inmunología , Anticuerpos ampliamente neutralizantes/administración & dosificación , Anticuerpos ampliamente neutralizantes/aislamiento & purificación , Anticuerpos ampliamente neutralizantes/metabolismo , Células CHO , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/virología , Chlorocebus aethiops , Cricetulus , Epítopos/inmunología , Células HEK293 , Humanos , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Pruebas de Neutralización , Pandemias/prevención & control , Multimerización de Proteína , Receptores Virales/metabolismo , SARS-CoV-2/genética , Células Sf9 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
20.
Sci Transl Med ; 13(606)2021 08 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1319371

RESUMEN

Multiple safe and effective vaccines that elicit immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary to respond to the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a protein subunit vaccine composed of spike ectodomain protein (StriFK) plus a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH002C). StriFK-FH002C generated substantially higher neutralizing antibody titers in mice, hamsters, and cynomolgus monkeys than those observed in plasma isolated from COVID-19 convalescent individuals. StriFK-FH002C also induced both TH1- and TH2-polarized helper T cell responses in mice. In hamsters, StriFK-FH002C immunization protected animals against SARS-CoV-2 challenge, as shown by the absence of virus-induced weight loss, fewer symptoms of disease, and reduced lung pathology. Vaccination of hamsters with StriFK-FH002C also reduced within-cage virus transmission to unvaccinated, cohoused hamsters. In summary, StriFK-FH002C represents an effective, protein subunit-based SARS-CoV-2 vaccine candidate.


Asunto(s)
COVID-19 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Cricetinae , Humanos , Ratones , Subunidades de Proteína , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA